Abstract

Since 2002, China has launched four Haiyang-1 (HY-1) satellites equipped with the Chinese Ocean Color and Temperature Scanner (COCTS), which can observe the sea surface temperature (SST). The planned new generation ocean color observation satellites also carry a sensor for observing the SST represented by the payload in this paper. We analyze the spectral brightness temperature (BT) difference between the payload and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra for the thermal infrared channels (11 and 12 µm) based on atmospheric radiative transfer simulation. The bias and standard deviation (SD) of spectral BT difference for the 11 µm channel are −0.12 K and 0.15 K, respectively, and those for the 12 µm channel are −0.10 K and 0.03 K, respectively. When the total column water vapor (TCWV) decreases from the oceans near the equator to high-latitude oceans, the spectral BT difference of the 11 µm channel varies from a positive deviation to a negative deviation, and that of the 12 µm channel basically remains stable. By correcting the MODIS BT observation using the spectral BT differences, we produce the simulated BT data for the thermal infrared channels of the payload, and then validate it using the Infrared Atmospheric Sounding Interferometer (IASI) carried on METOP-B. The validation results show that the bias of BT difference between the payload and IASI is −0.22 K for the 11 µm channel, while it is −0.05 K for the 12 µm channel. The SD of both channels is 0.13 K. In this study, we provide the simulated BT dataset for the 11 and 12 µm channels of a payload for the retrieval of SST. The simulated BT dataset corrected may be used to develop SST-retrieval algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call