Abstract

• The analytical model is tailored to hydraulically independent geothermal boreholes. • Thermal influence can be detected even in case of a few, far apart installations. • New installations can be strongly affected by older neighbouring installations. • Similar systems can perform differently due to neighbouring installations. Ground Source Heat Pumps (GSHPs) connected to Borehole Heat Exchangers (BHEs) are a fast-growing technology for thermally efficient buildings. Therefore, areas with several independent GSHP installations close to each other are becoming more and more common. To guarantee an optimal operation of these systems, it is necessary to design them considering the influence of the neighbouring installations. However, a tailored model for this scope has not been found in the literature. In this paper, we aim at filling this gap by proposing and validating a methodology to calculate the thermal influence between neighbouring independent boreholes. It is based on the Finite Line Source (FLS) model and prescribes novel boundary conditions, tailored to hydraulically independent boreholes. The methodology allows to prescribe different thermal loads to different BHEs and imposes uniform temperature boundary condition on each borehole wall. We also show how to implement and apply the model. Our application shows a thermal influence of up to 1.5 K during the lifetime of a GSHP and of up to 0.8 K during the first year of operation in an area with a relatively low number of installations, underlying the importance of considering the thermal influence and the usefulness of our proposed model. Finally, a sensitivity study on the ground thermal conductivity shows the importance of a correct estimation of this property for accurate simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.