Abstract

AbstractInternal solitary waves transform as they propagate shoreward over the continental shelf into the coastal zone, from a combination of the horizontal variability of the oceanic hydrology (density and current stratification) and the variable depth. If this background environment varies sufficiently slowly in comparison with an individual solitary wave, then that wave possesses a soliton-like form with varying amplitude and phase. This stage is studied in detail in the framework of the variable-coefficient extended Korteweg–de Vries equation where the variation of the solitary wave parameters can be described analytically through an asymptotic description as a slowly varying solitary wave. Direct numerical simulation of the variable-coefficient extended Korteweg–de Vries equation is performed for several oceanic shelves (North West shelf of Australia, Malin shelf edge, and Arctic shelf) to demonstrate the applicability of the asymptotic theory. It is shown that the solitary wave may maintain its soliton-like form for large distances (up to 100 km), and this fact helps to explain why internal solitons are widely observed in the world's oceans. In some cases the background stratification contains critical points (where the coefficients of the nonlinear terms in the extended Korteweg–de Vries equation change sign), or does not vary sufficiently slowly; in such cases the solitary wave deforms into a group of secondary waves. This stage is studied numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call