Abstract

The problem on the transfer of a three-phase water–gas–oil mixture in a porous medium was solved for the case where the water contains a fine-disperse gas phase in the form of microsized or nanosized bubbles. It was suggested that the transfer of bubbles is mainly due to the flow of the disperse phase (water). In this case, the large aggregates of the gas phase in the porous space, in the water, and in the oil are transferred in accordance with the modified Darcy law for multiphase mixtures. A mathematical model of movement of the indicated mixture has been constructed for the case where the main phases (water, gas, and oil) adhere to the filtration equations and the fine-disperse gas phase is defined by a kinetic equation like the Boltzmann equation. Some one-dimensional numerical solutions of the indicated problem were analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.