Abstract

Based on the analyses of aluminum melt solidification and heat transfer during the process of twin-roll casting, a coupling mathematical model of thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, FEM was adopted to solve the coupling model. The temperature field, thermal stress field and strain field of aluminum melt in casting zone were simulated by this model. When the casting velocity is 7m/min, and the thickness of strip is 2 mm, in the melt zone, the temperature of melt decreases rapidly as it approaches the rollers; the surface stress of strip is larger than the central stress; In the liquid zone and mushy zone, thermal stress is relatively small; in rolling zone, thermal stress is much larger than in the former two zones, and gradually increases along exports, then gradually decreases after the peak; the outsurface strain of the casting strip is larger than the inner strain, and the thermal stress gradually increases along exports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.