Abstract

AbstractA numerical simulation model is built to simulate the production of cosmogenic nuclides based on Geant4 (GEometry ANd Tracking). Some modifications have been made for cross sections in Geant4 using the experimental data or the other proper model and the contributions of all secondary particles caused by cosmic rays are included in our simulation model. Our simulation results suggest a substantial contribution of the secondary charged pions to the production rates of 10Be and 14C, as high as 21.04% for 10Be and 21.36% for 14C, respectively. Within one set of self‐consistent parameters, the simulation results of the production rates of the cosmogenic nuclides, 53Mn, 36Cl, 41Ca, 26Al, 10Be, and 14C, agree well with the measured data from Apollo 15 drill core. This model provides users a validated approach to study the production of cosmogenic nuclides on the planet surface and in the meteorites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.