Abstract

A three-dimensional fully kinetic particle-in-cell (PIC) simulation strategy has been implemented to simulate the acceleration stage of a magnetically enhanced plasma thruster (MEPT). The study has been performed with the open-source code Spacecraft Plasma Interaction Software (SPIS). The tool has been copiously modified to simulate properly the dynamics of a magnetized plasma plume. A cross-validation of the methodology has been done with Starfish, a two-dimensional open-source PIC software. Two configurations have been compared: (i) in the absence of a magnetic field and (ii) in the presence of a magnetic field generated by a coil with maximum intensity of 300 G at the thruster outlet. The results show a reduction of the plume divergence angle, an increase of ion speed and an increase of the specific impulse in the presence of the magnetic nozzle. The simulations presented in this study are representative of the operative conditions of a 50 W MEPT. Nonetheless, the methodology adopted can be extended to handle the magnetized plasma plume of several other types of thrusters such as electron cyclotron resonance and applied field magnetoplasmadynamic thrusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.