Abstract

The method of mathematical simulation is used to examine the influence exerted by the characteristics of the epitaxial structure and contact grid of photovoltaic laser-power converters on their ohmic loss. The maximum attainable photoconverter efficiency at a Gaussian distribution of the laser-beam intensity on the surface of a photovoltaic converter and at dark-current densities of p–n junctions typical of structures grown by the metal-organic vapor-phase epitaxy (MOVPE) technique are determined. An approach to finding the optimal parameters of GaAs and In0.24Ga0.76As/GaAs photovoltaic converters in relation to the optical power being converted is suggested, and the structural parameters for incident-power values of 5, 20, and 50 W at wavelengths of 809 and 1064 nm are determined. It is found that, at laser-light intensities of up to 5 W, >60% efficiency can be achieved in laser-light conversion at a wavelength of 809 nm and >55% efficiency, at a wavelength of 1064 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call