Abstract

The fact that muscles are composed of different Motor Units (MUs) is often neglected when investigating motor control by macro models of human musculo-skeletal-joint systems. Each muscle is associated with one control signal. This simplification leads to difficulties when mechanical and electrical manifestations of the muscle activity are juxtaposed. That is why a new approach for muscle modelling was recently proposed (Journal of Biomechanics 2002;35:1123–1135). It is based on MUs twitches and a Hierarchical Genetic Algorithm (HGA) is implemented for choosing the moments of activation of the individual MUs, thus simulating the control of the nervous system. Its basic benefit is obtaining the complete information about the mechanical and activation behaviour of all MUs, respectively muscles, during the whole motion. Its possibilities are demonstrated when simulating fast elbow flexion. Three flexor and two extensor muscles, each consisting of approximately real number of different types of MUs, are modelled. The task is highly indeterminate and the optimization is performed according to a fitness function that is an assessed combination of criteria (minimal deviation from the given joint moment, minimal total muscle force and minimal MUs activation). The influence of the weight of the first criterion (the one that reflects the importance of the movement accuracy on the predicted results), is investigated. Two variants concerning the muscle MUs structure are also compared: each muscle is composed of four distinct types MUs and the MUs twitch parameters are uniformly distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.