Abstract
The continuous formation of H2, O2, and H2O2 observed in water during α-radiolysis may be suppressed by the addition of H2 above the threshold hydrogen concentration (THC). Using the FACSIMILE simulation code, water radiolysis was reproduced in order to determine the THC and clarify the mechanism at room temperature. Using the reaction set and rate constants reported by Ershov and Gordeev together with the primary yields for water decomposition products generated using 12 MeV α-particles, the THC was found to be 165 μM. Further simulation results clearly showed that the value of THC is strongly dependent on the reaction set and rate constants. In addition, a possible mechanism involving a chain reaction governed by the two reactions OH + H2 → H + H2O and H + H2O2 → OH + H2O was proposed. Furthermore, the same inhibition effect was found when a high-temperature simulation (300 °C) was performed, but the concentration range and THC were much smaller than the values obtained at room temperature. The importance of the reverse reaction OH + H2 → H + H2O was also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.