Abstract

Dynamical decoupling is widely used in many quantum computing systems to combat decoherence. In a practical superconducting quantum system, imperfections can plague decoupling performance. In this work, imperfections in a superconducting qubit and its control system are modeled via modified Hamiltonian and collapse operator. A master equation simulation is carried out on the qubit under 1/f environment noise spectrum. The average dephasing rate of qubit is extracted to characterize the impact of different imperfections on the decoupling from dephasing. We find that the precision of pulse position, on–off ratio, and filtering effect are most critical. Bounded pulses have weaker impact, while variation in pulse width and qubit relaxation are insignificant. Consequently, alternative decoupling protocols, jitter mitigation, cascaded mixers, and pulse shaping can be conducive to the performance of decoupling. This work may assist the analysis and optimization of dynamical decoupling on noisy superconducting quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.