Abstract

In this work, we examine in detail the structure and dynamics of the face-centered cubic (100) and (111) crystal–melt interfaces for systems consisting of approximately 104 hard spheres using molecular dynamics simulation. A detailed analysis of the data is performed to calculate density, pressure, and stress profiles (on both fine and coarse scales), as well as profiles for the diffusion and orientational ordering. The strong dependence of the coarse-grained profiles on the averaging procedure is discussed. Calculations of 2-D density contours in the planes perpendicular to the interface show that the transition from crystal to fluid occurs over a relatively narrow region (over only 2–3 crystal planes) and that these interfacial planes consist of coexisting crystal- and fluidlike domains that are quite mobile on the time scale of the simulation. We also observe the creation and propagation of vacancies into the bulk crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.