Abstract
Particle-based molecular simulations of pure diblock copolymer (DBC) systems were performed in continuum space via dissipative particle dynamics and Monte Carlo methods for a bead-spring chain model. This model consisted of chains of soft repulsive particles often used with dissipative particle dynamics. The gyroid phase was successfully simulated in DBC melts at selected conditions provided that the simulation box size was commensurate with the gyroid lattice spacing. Simulations were concentrated at conditions where the gyroid phase is expected to be stable which allowed us to outline approximate phase boundaries. When more than one phase was observed by varying simulation box size, thermodynamic stability was discerned by comparing the Helmholtz free energy of the competing phases. For this purpose, chemical potentials were efficiently simulated via an expanded ensemble that gradually inserts/deletes a target chain to/from the system. These simulations employed a novel combination of Bennett's [J. Comput. Phys. 22, 245 (1976)] acceptance-ratio method to estimate free-energy differences and a recently proposed method to get biasing weights that maximize the number of times that the target chain is regrown. The analysis of the gyroid nodes revealed clear evidence of packing frustration in the form of an (entropically) unfavorably overstretching of chains, a phenomenon that has been suggested to provide the structural basis for the limited region of stability of the gyroid phase in the DBC phase diagram. Finally, the G phase and nodal chain stretching were also found in simulations with a completely different DBC particle-based model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.