Abstract

Abstract The bond fluctuation model of polymer chains on sc lattices with an energy that favours long bonds can describe the slowing down of supercooled melts that approach the glass transition in qualitative similarity with various experiments. In this paper we focus on the question of whether there exists a correlation length that increases to large values when the temperature is lowered towards the glass transition. Two types of analysis are presented: firstly density oscillations near hard walls become long range, and the resulting correlation length becomes larger than the gyration radius, secondly oscillations in the pair correlation function in real space also become long range, and a similar correlation length can hence also be deduced in the bulk, without recourse to surface effects. In contrast, a finite-size scaling analysis of the diffusion behaviour of chains in small three-dimensional lattices with periodic boundary conditions does not give evidence for this length, unlike earlier results fo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.