Abstract

A reaction-diffusion mathematical model has been developed to predict the gastric digestion of meat proteins. The model takes into account pepsin diffusion and proton diffusion in bolus particles and the pH buffering capacity of meat. The computations show that the size of bolus particles and the change in gastric pH have a substantial effect on the percentage of protein digested in the stomach and that the pH buffering capacity of meat has to be accounted for to properly calculate the gastric digestibility of meat. The intensity of surface transfers between stomach fluid and bolus particles has a significant impact on protein digestibility, whereas the variation in pepsin content in the stomach between individuals appears to have little effect on protein digestibility. From a nutritional standpoint, the simulations show that meat protein digestibility is high under normal physiological stomach conditions. However, in a situation where masticatory capacity, hydrochloric acid secretion and gastric motor function performances are reduced, such as with advancing age, protein digestibility rapidly decreases, ultimately leading to near-zero digestibility value in the stomach in extreme cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.