Abstract

The accurate determination of the gas density distribution in negative ion accelerators plays a substantial role for the protection of the components and the efficiency of the system. The presence of background gas in between the electrodes has the highest impact on the beam properties and on the heat loads on the electrodes. The full-scale ITER beam source and extractor test facility SPIDER is studied considering the large vacuum vessel (4 m diameter), the pumping system, the plasma source (hydrogen gas filling pressure of ∼0.3 Pa) and the geometry of the in-vacuum components. On a smaller scale, the beam source and the multi-aperture electrodes (provided with apertures having an inner diameter of ∼12 mm) is accurately modeled. In these applications, the gas-surface interaction plays an important role and is therefore studied with dedicated models (on the nano-scale) to improve the predictive capability of molecular gas flow simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.