Abstract

Record-breaking high waves occurred during the passage of the typhoon Bolaven (1215) (TYB) in the East China Sea (ECS) and Yellow Sea (YS) although its intensity did not reach the level of a super typhoon. Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys. In order to understand how such high waves with long duration occurred, analyses have been made through measurement and numerical simulations. TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements. And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model. Wave fields were simulated using WAM4.5 with adjustment of C d for gust of winds and bottom friction for the study area. Thus the accuracy of simulations is considerably enhanced, and the computed results are also in better agreement with measured data than before. It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track. As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days, the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.