Abstract
The drift-diffusion (Poisson--Nernst--Planck) model---including a numerical model for cell membranes that resolves surface-charge boundary layers---is applied to the cone--horizontal cell synapse in the outer plexiform layer of the retina. Numerical simulations reproduce the experimental calcium current-voltage (IV) curves for the goldfish retina in response to a bright spot, with and without an illuminated background. The ephaptic (electrical) effect is demonstrated by computing the shift in the IV curve for background off versus background on for increasingly narrower openings between the sides of the cone and the horizontal cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.