Abstract
This paper reports the results of computer modeling of microtubules that end up in the cortical region of a one-cell amphibian embryo, prior to the first cell division. Microtubules are modeled as initially randomly oriented semi-flexible rods, represented by several lines of point-masses interacting with one another like masses on springs with longitudinal and transverse stiffness. They are also considered to be space-filling rods floating in a viscous fluid (cytoplasm) experiencing drag forces and buoyancy from the fluid under a variable gravity field to test gravitational effects. Their randomly distributed interactions with the surrounding spherical container (the cell membrane) have a statistical nonzero average that creates a torque causing a rotational displacement between the cytoplasm and the rigid cortex. The simulation has been done for zero and normal gravity and it validates the observation that cortical rotation occurs in microgravity as well as on Earth. The speed of rotation depends on gravity, but is still substantial in microgravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.