Abstract

Investigation of the effect of sidewall and carinal tumours, airway constrictions and airway blockage on the inspiratory airflow and particle deposition in the large central human airways was the primary objective of this study. A computational fluid and particle dynamics model was implemented, validated and applied in order to simulate the air and particle transport and to quantify the aerosol deposition in double airway bifurcation models. Our investigations revealed that surface abnormalities and tubular constrictions can significantly alter the airstreams and the related local aerosol deposition distributions. Sidewall tumours have lead to an enhanced deposition of large particles and caused lower deposition efficiency values of nano-particles compared to the deposition efficiency in healthy airways. Central tumours multiplied the deposition efficiency of large particles but hardly affected the deposition efficiency of nano-particles. Airway blockage caused a significant redistribution of particle deposition sites. The deposition efficiency of the inhaled aerosols in constricted airways was much higher than the same deposition efficiency in healthy airways. Current results might help in the understanding of the adverse health effects of the inhaled air-pollutants in patients with lung disease and might be integrated into future aerosol therapy protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.