Abstract

A model that describes the evolution of the size of an austenite grain of low-alloyed steels under deformation within the temperature region of stable austenite has been proposed. The model describes both the change in the dislocation density under deformation with consideration for relaxation processes and the deformation-induced processes of the precipitation and evolution of carbonitride phases. The effect of an ensemble of carbonitride precipitates on grain growth kinetics is also taken into account. The model serves as a basis for creating a program used to perform the calculations for low-alloyed niobium-doped steel at different temperatures, deformation rates, and initial grain sizes. The obtained results have been compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.