Abstract

We investigated the simulation of the cracking and ablation behavior of ferro-siliceous and siliceous nuclear sacrificial concretes. To this end, four type of sacrificial concretes were fabricated, i e, the ferro-siliceous (F) and siliceous (S) plain concretes, and the polypropylene fiber reinforced concretes of the above two (FF, SF). The cracking and ablation behaviors of the sacrificial concretes were investigated by simulation tests, and the simulated elevated temperature was obtained by means of thermite powder. The number and the width of the cracks were compared and the pore size distribution of sacrificial concretes was measured. In addition, the interface and chemical composition of melt at different positions were analyzed, and the ablation depth of the sacrificial concrete crucibles was also measured. It was found that the siliceous concrete shows to be more prone to cracking than the ferro-siliceous concrete due to the higher content of fly ash and lower water to binder ratio; though the ablation depth of siliceous concrete is found to be slightly larger, no clear difference can be detected for the basemat ablation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.