Abstract
A computational three-dimensional (3D) heat transfer model has been developed and applied to calculate the temperature distribution and solid shell thickness profile of a continous cast slab in a steel plant. This developed model includes non-linear material properties of specific heat and thermal conductivity as well as phase changes during solidification. A general thermo-fluidmechanics computer program, PHOENICS, was employed to numerically solve the heat transfer equation with the associated source terms. The thermal profile and solid shell thickness calculated by mathematical model agree with those predicted by an industrial model and experimental measurements. The model could also be used to predict the optimum process parameters on casting speed, heat removal rates and associated water flow rates and roll force. These parameters could be monitored by suitable sensors and controlled through a feed back system that interfaced with the mathematical model and the sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.