Abstract

In this study, falling and the coalescence of a pair ferrofluid droplets subjected to uniform magnetic field are investigated numerically. For this approach, a 2-D hybrid approach combined of lattice-Boltzmann and finite volume method is used. The lattice Boltzmann equation with the magnetic force term is solved to update the flow field while the magnetic induction equation is solved using finite volume method to calculate the magnetic field. To validate current simulations, three test cases have been considered: Laplace, multiple rising bubbles and de-formation of static drop under magnetic field are analyzed. The comparison of results between the present study and previous researches shows a good agreement. The effects of different parameters: magnetic Bond number, magnetic susceptibility, and magnetic field direction are comprehensively studied. The results show that the coalescence of droplets becomes fast with the increasing Bond number and susceptibility in y-direction magnetic field. Also, the coalescence and falling process of droplets takes more time in the horizontal magnetic field in comparison with the vertical magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.