Abstract
Pulse–width modulated inverters are commonly used to control electrical drives, generating a common mode voltage and current with high–frequency components that excite the parasitic capacitances within electric machines, such as permanent magnet synchronous machines or induction machines. This results in different types of bearing currents that can shorten the service life of electric machines. One significant type of inverter–induced bearing currents are high–frequency circulating bearing currents. In this context, this work employs finite element analysis and time-domain simulations to determine the common mode current and circulating bearing current for various permanent magnet synchronous machine designs based on the traction machines of commercial electric vehicles with a focus on the stator. The results suggest that the ratio between the circulating bearing current and common mode current is much smaller in permanent magnet synchronous machines for traction applications than previously established in conventional induction machines, with values below 10% for all analyzed designs. A further increase in the robustness of such electric machines to the detrimental effects caused by the inverter supply could be achieved by reducing the parasitic winding–to–stator capacitance or by increasing the stator endwinding leakage inductance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.