Abstract

The expansion of aluminum pipes with variable wall thickness under internal pressure is simulated using ESI Virtual-Performance 2016.0 software based on the finite-element method. The convergence and accuracy of the solution is estimated by comparing with known solutions. It is established that internal pressure causes pipes with variable wall thickness to burst where the wall is the thinnest. The thinnest section of the pipe becomes even thinner, whereas the maximum wall thickness does not almost change. This increases the variation in the wall thickness, promoting the rupture of the thin wall. It is recommended to use pipes with minimum wall thickness variation to convey high-pressure fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.