Abstract

Thin-walled tubes are widely used as impact absorbers in transportation structures, due to their high efficiency in absorbing longitudinal impact loads. This study focuses on the investigation of the effect of squared lattice infill in the crashworthiness efficiency of thin-walled aluminum tube. The tube and infill were modeled as an additively manufactured integrated part. Impact analysis was performed using finite element method (FEM), considering empty and filled tubes with different combinations of thicknesses for tube walls and lattice structure. The inclusion of lattice infill changed the crashworthiness efficiency of the energy absorber. Filled tubes presented increased energy absorption and higher values of peak and mean force levels. Tube crushing mode and crushing efficiency were also affected by infill configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call