Abstract

A three-dimensional finite element program is described which attempts to simulate the nonlinear mechanical behavior of an aging human face with specific reference to progressive gravimetric soft tissue descent. A cross section of the facial structure is considered to consist of a multilayered composite of tissues with differing mechanical behavior. Relatively short time (elastic-viscoplastic) behavior is governed by equations previously developed which are consistent with mechanical tests. The long time response is controlled by the aging elastic components of the tissues. An aging function is introduced which, in a simplified manner, models the observed loss of stiffness of these aging elastic components due to the history of straining as well as other physiological and environmental influences. Calculations have been performed for 30 years of exposure to gravitational forces. The deformations and stress distributions in the layers of the soft tissues are described. Overall, the feasibility of using constitutive relations which reflect the highly nonlinear elastic-viscoplastic behavior of facial soft tissues in finite element based three-dimensional mechanical analyses of the human face is demonstrated. Further developments of the program are discussed in relation to possible clinical applications. Although the proposed aging function produces physically reasonable long-term response, experimental data are not yet available for more quantitative validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call