Abstract
The results of the numerical analysis of heat- and mass-transfer processes at powder particles' motion in a gas flow and laser beam by light-propulsion force during the laser cladding and direct material deposition are presented. Under consideration were the stainless steel particles, the radiation power range of the CO 2 laser were 1000, 3000 and 5000 W. Finally, the particles of 45 μm in diameter reach the maximum velocity of about 80, 220, 280 m/s. It is shown that as particles are heated by the laser up to the temperature approaching the boiling point, the particles' velocity in the light field by the vapor recoil pressure may increase significantly. The radius of the particles slightly varies due to the evaporation; the losses in the clad material mass are negligibly small. Comparisons of numerical results with known experimental data on light-propulsion acceleration of single particles (aluminum, aluminum oxide and graphite) under the influence of pulse laser radiation are also presented. Particle acceleration resulting from the laser evaporation depends on the particle diameter, powder material properties, focusing degree and attenuation laser beam intensity by the direction of its propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.