Abstract
The study of thin-film solar cells based on tin sulphide is becoming increasingly relevant due to its advantages over similar technologies, such as its low cost, toxicity, and the fact that its constituent elements are more abundant in the earth's crust; besides, they could be made by thigh vacuum techniques like thermal spraying, sputtering, co-evaporation, or thermal evaporation. On the other hand, Simulations allow modelling of the behaviour of solar cells to understand the processes and improve the device's efficiency. Therefore, in this work, the simulation process is carried out using mathematical models that represent the physical behaviour of the solar cell made of heterojunction of several thin films with ZnO/ZnS/SnS configuration. Two radiation models were evaluated, one using a theoretical equation and the other with data from the incident radiation. Until today, different simulations of solar cells have been carried out mainly using a Solar Cell Capacitance Simulator (SCAPS); however, this research was developed using MATLAB due to its performance and efficiency. The optimal thickness of the absorbent layer was established from the results obtained for open circuit voltage (Voc), short circuit current density (Jsc), fill factor and conversion efficiency (n).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.