Abstract

Taylor flow, a flow regime characterized by Taylor bubbles separated by liquid slugs that do not contain entrained micro bubbles, is a predominant gas−liquid two-phase flow regime in capillaries and minichannels (channels with hydraulic diameters in the 0.1−1 mm range), and it occurs in monolithic catalytic converters and other multiphase reactors. Taylor flow regime is morphologically relatively simple and has been modeled in the past using computational fluid dynamics (CFD) methods. However, most of the past CFD models have either assumed a fixed gas−liquid interfacial geometry or have modeled the gas−liquid interphase movement based on the method of spines, which imposes some restrictions on the free movement of the interface. In this study, we examine the feasibility of CFD modeling of the Taylor flow regime in capillaries by using the volume-of-fluid (VOF) technique for the motion of the gas−liquid interphase. It is shown that such a model predicts well the experimental data and empirical correlation...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.