Abstract

The present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K (50% RR). Moreover, the peak pressure was improved from 3659073 Pa to 4525366 pa (23% increase), 4947790 pa (35% increase), 5929709Pa (62% increase) and 6708188 Pa (83%) for diesel fuel mode and dual fuel mode (20%, 30%, 40% and 50%) respectively. Moreover, CO, NO, and CO2 emissions in the engine increased with the increase in syngas’ replacement ratio with diesel. Besides, the emission levels of NO, CO2 and CO from a diesel engine are lower than a dual fuel engine (syngas-diesel). The NO mass fraction values rise from 2.02505E-19 at diesel mode to 0.000834126 (20% RR), 0.004176854 (30% RR), 0.005021933 (40% RR) and 0.007554865 (50% RR). Moreover, the CO2 mass fraction values increase from 5.90944E-07 at diesel mode to 0.033849446 (50% RR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call