Abstract

With semiconductor device simulation software TCAD, numerical simulations of ionizing/displacement synergistic effects on 6 kinds of lateral PNP bipolar transistors induced by the mixed irradiation of neutron and gamma are carried out by means of changing the minority carrier lifetimes, adding charged traps to the oxide layer and increasing the surface recombination velocity in Si/SiO2 interface. The results indicate that ionizing/displacement synergistic effects on the lateral PNP bipolar transistors are not a simple sum of total ionizing dose effects and displacement effects, and total ionizing dose effects can enhance neutron displacement damages, leading to greater gain degradation. The physical mechanisms of ionizing/displacement synergistic effects are analyzed based on the results. The positive charge in the oxide layer and Si/SiO2 interface traps induced by gamma irradiation can enhance the recombination processes of carriers in the bulk defects induced by neutron irradiation, and this is the main cause of ionizing/displacement synergistic effects on the lateral PNP bipolar transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call