Abstract

A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion. The sub-models are the k– ε– k p two-phase turbulence model, the EBU–Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The prediction results are in good agreement with the experimental results taken from references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.