Abstract

AbstractThe hydrodynamics of a swimming jellyfish depends on the morphology of the species. For example, oblate jellyfish appear to generate wide vortex structures near the bell margin. The vortex structures affect both the propulsion system and the feeding structure because the swimming and prey capturing activities are interrelated processes in these taxa. A three-dimensional computational model was established for an oblate jellyfish to analyse how the vortex structures present in the wake affect the swimming mechanism and the propulsion efficiency, which is defined as the ratio of power output (thrust multiplied by centre velocity) to power input (energy rate required for bell contraction). An improved penalty immersed boundary method was adopted to consider the interactions between the swimming jellyfish and the ambient fluid. The vortex structures in the wake of the swimming jellyfish were investigated in detail. The vortices generated by the contraction and expansion of the jellyfish bell interact with the vortex structures generated by the forward-moving behaviour of the jellyfish. The resulting vortex structures not only transfer momentum to the swimming jellyfish via the fluid, thereby providing the main source of thrust, but also have an implication for feeding. The effects of the elastic properties of the jellyfish on the propulsion were examined. The propulsion efficiency reaches its optimum value at particular elastic properties. We also investigated the effect of the swimming pattern of jellyfish on the propulsion efficiency. The efficiency increases with the flapping frequency and force duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call