Abstract

Supercritical CO2 (sCO2) is a promising working fluid for future high-efficiency power conversion cycles. In order to develop these cycles, it is necessary to understand supercritical and two-phase CO2 flow. This paper presents a methodology for the computational fluid dynamic (CFD) simulation of sCO2 flowing through a restriction under a wide range of flow conditions. Under an accidental situation, such as a pipe break, the inventory of sCO2 leaks out through a small restriction. In this research, we use circular and annular orifices to mimic the behavior of restrictions. As the atmospheric pressure is much smaller than the operating pressure in the pipe, a two-phase choked flow will happen. Such behavior is considered in the simulation. The homogeneous equilibrium model (HEM) is employed to model the two-phase state. To correctly simulate the behavior of the power cycle under this accidental scenario, the inventory leakage rate should be calculated precisely. Therefore, at the current state, this study only focuses on the prediction of mass flow rate through orifices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.