Abstract
The temporal evolution of three-dimensional structure in an electrorheological (ER) fluid is examined by a computer simulation. A parameter B characterizing the ratio of the Brownian force to the dipolar force is introduced. For a wide range of B, the ER fluid has a rapid chain formation followed by aggregation of chains into thick columns which has a body-centered tetragonal lattice structure. The Peierls-Landau instability of single chains help formation of thick columns. If the Brownian force is very small, the ER system may be trapped in some local energy-minimum state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.