Abstract

In this work, nonlinear dynamic analysis of thin structures is investigated using quadratic solid–shell (SHB-EXP) elements. The proposed SHB-EXP elements are based on a fully three-dimensional formulation using an in-plane reduced-integration scheme along with the assumed-strain method in order to alleviate most locking phenomena. These developments consist of a 20-node hexahedral element, denoted SHB20-EXP, and its 15-node prismatic counterpart, denoted SHB15-EXP. The formulation of these elements is combined with fully three-dimensional behavior models, including elastic behavior as well as anisotropic plastic behavior for metallic materials. The resulting formulations are implemented into the ABAQUS explicit/dynamic software package in the framework of large displacements and rotations. First, to assess the performance of the SHB-EXP elements, four representative nonlinear dynamic benchmark tests have been conducted. Then, impact/crash problem and deep drawing of cylindrical cup have been performed to demonstrate the capabilities of the SHB-EXP elements in handling various types of nonlinearities (large strains, anisotropic plasticity, and double-sided contact). Comparisons with results obtained by ABAQUS elements as well as with reference solutions taken from the literature show the good capabilities of the developed quadratic SHB-EXP elements for the explicit dynamic simulation of thin structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call