Abstract

A numerical model integrating tides, waves, and surges can accurately evaluate the surge height (SH) risks of tropical cyclones. Furthermore, incorporating the external forces exerted by the storm’s wind field can help to accurately reproduce the SH. However, the lack of long-term typhoon best track (BT) data degrades the SH evaluations of past events. Moreover, archived BT data (BTD) for older typhoons contain less information than recent typhoon BTD. Thus, herein, the wind field structure, specifically its relationship with the central air pressure, maximum wind speed, and wind radius, are augmented. Wind formulae are formulated with empirically adjusted radii and the maximum gradient wind speed is correlated with the central pressure. Furthermore, the process is expanded to four quadrants through regression analyses using historical asymmetric typhoon advisory data. The final old typhoon BTs are converted to a pseudo automated tropical cyclone forecasting format for consistency. Validation tests of the SH employing recent BT and reconstructed BT (rBT) indicate the importance of the nonlinear interactions of tides, waves, and surges for the macrotidal west and microtidal south coasts of Korea. The expanded wind fields—rBT—based on the historical old BT successfully assess the return periods of the SH. The proposed process effectively increases typhoon population data by incorporating actual storm tracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call