Abstract

Modeling and simulation of biochemical systems are important tasks because they can provide insights into complicated systems where traditional experimentation is expensive or impossible. Stochastic hybrid systems are an ideal modeling paradigm for biochemical systems because they combine continuous and discrete dynamics in a stochastic framework. Simulation of these systems is difficult because of the inherent error which is introduced near the boundaries. In this work we develop a method for stochastic hybrid system simulation that explicitly considers switching and reflective boundaries. We also present a case study of the water/electrolyte balance system in humans and provide simulation results to demonstrate the usefulness of the improved simulation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.