Abstract
A new model is proposed to represent and simulate Gaussian/non-Gaussian stochastic processes. In the proposed model, stochastic harmonic function (SHF) is extended to represent multivariate Gaussian process firstly. Compared with the conventional spectral representation method (SRM), the SHF based model requires much fewer variables and Cholesky decompositions. Then, SHF based model is further extended to univariate/multivariate non-Gaussian stochastic process simulation. The target non-Gaussian process can be obtained from the corresponding underlying Gaussian processes by memoryless nonlinear transformation. For arbitrarily given marginal probability distribution function (PDF), the covariance function of the underlying multivariate Gaussian process can be determined easily by introducing the Mehlerâs formula. And when the incompatibility between the target non-Gaussian power spectral density (PSD) or PSD matrix and marginal PDF exists, the calibration of the target non-Gaussian spectrum will be required. Hence, the proposed model can be regarded as SRM to efficiently generate Gaussian/non-Gaussian processes. Finally, several numerical examples are addressed to show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.