Abstract
In this work, softening kinetics after cold rolling has been simulated using a coupled finite element-cellular automata model. Firstly, a two-dimensional rigid plastic finite element analysis has been developed to assess strain field and the stored energy accumulation during cold rolling as well as the initial condition of the mesoscopic model. Then, the cellular automata scheme has been employed to calculate the progress of static recrystallization at a given temperature while a dislocation-base model was simultaneously utilized to consider the effect of recovery on static softening process and final microstructures. The model has been examined on isothermal annealing of cold rolled AA5052 and a good agreement was found between the experimental observations and the predicted results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.