Abstract

In this article, the finite element and cellular automata models are coupled to determine static recrystallization kinetics after cold deformation of low carbon steels. The deformation analysis is first performed to predict the strain, stress, and stored energy distributions within the deformed steel employing the finite element software, ABAQUS. Then, the kinetics of static recrystallization and distribution of recrystallized grain size are evaluated by means of a cellular automata model together with the stored energy calculated by the deformation analysis. To examine the predictions, the experimental results of recrystallized fractions and grain sizes after cold side-pressing of low carbon steel are compared with the predicted ones, and a reasonable agreement is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call