Abstract

The spreading of insoluble surfactant on a thin liquid film is modeled by a pair of nonlinear partial differential equations for the height of the free surface and the surfactant concentration. A numerical method is developed in which the leading edge of the surfactant is tracked. In the absence of higher order regularization the system becomes hyperbolic/degenerate-parabolic, introducing jumps in the height of the free surface and the surfactant concentration gradient. We compare numerical simulations to those of a hybrid Godunov method in which the height equation is treated as a scalar conservation law and a parabolic solver is used for the surfactant equation. We show how the tracking method applies to the full equations with realistic gravity and capillarity terms included, even though the disturbance in the height of the free surface extends beyond the support of the surfactant concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.