Abstract

We apply an efficient method to calculate spin-polarized scanning tunneling microscopy (SP-STM) images of nanostructures with complex non-collinear magnetic order. The model is based on the spin-polarized version of the Tersoff–Hamann model of STM and the independent orbital approximation for the surface electronic structure. For its application, only the knowledge of the arrangement of the magnetic moments of the surface atoms is required. In spite of its simplifications, calculated SP-STM images of periodic collinear and non-collinear magnetic spin structures are in many cases in excellent agreement with those obtained from computationally much more demanding ab initio calculations. Especially for surfaces of chemically equivalent atoms, the atomic scale SP-STM images are dominated by the magnetic structure and depend much less on the accurate electronic structure. This suggests the application of the method to more complex non-collinear magnetic structures such as domain walls in antiferromagnets, spin-spiral states, spin glasses, or disordered states. Based on the model, we predict SP-STM images of helical spin-spiral states in ultra-thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.