Abstract

Wavefront aberrations caused by the refractive index structure of the specimen are known to compromise signal intensity and three-dimensional resolution in confocal and multiphoton microscopy. However, adaptive optics can measure and correct specimen-induced aberrations. For the design of an adaptive optics system, information on the type and amount of the aberration is required. We have previously described an interferometric set-up capable of measuring specimen-induced aberrations and a method for the extraction of the Zernike mode content. In this paper we have modelled specimen-induced aberrations caused by spherical and cylindrical objects using a ray tracing method. The Zernike mode content of the wavefronts was then extracted from the simulated wavefronts and compared with experimental results. Aberrations for a simple model of an oocyte cell consisting of two spherical regions and for a model of a well-characterized optical fibre are calculated. This simple model gave Zernike mode data that are in good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.