Abstract

Nowadays, due to the global need for energy and the limited amount of fossil fuels, it is required to utilize alternative forms of energy. Thermal energy storage systems together with phase change materials are considered potential options to help achieve renewable energy development goals. Special groups of materials are used for thermal management in thermal processes due to their specific properties such as high latent heat, appropriate phase change temperature, and slight volume change during phase change. In this study, the effects of branch-shaped fins with different thicknesses and lengths on the thermal conductivity of phase change materials are investigated. Furthermore, the different volume ratios is studied. The results show that using thinner branch-shaped fins and hybrid Al2O3 – Cu with volume ratio of 0.04 has greater influence on the speed of the solidification process. The results also illustrate that the use of fins significantly speeds up the solidification process. The comparison between thin and thick fins revealed that the thin fin is a more viable option in increasing heat transfer rate. In this simulation, the finite element method has been employed. Generally, simultaneous use of thin branch-shaped fins and nanoparticles with volume fraction 0.04 leads to maximum efficiency in the simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.