Abstract

Several sites located between Road No.28 and Akitsu River in downtown Mashiki were liquefied during the mainshock of the 2016 Kumamoto earthquake. According to the building damage survey results, only a few buildings were damaged in areas proximate to the Akitsu River, where liquefaction occurred, however, serious building damage occurred in neighboring regions. Therefore, the effect of soil liquefaction on strong ground motions in Mashiki should be ascertained. Moreover, the distribution of visible and invisible liquefaction is required to be estimated as well. In this study, the distribution of depth of groundwater level in Mashiki was studied, which decreased from 14 to 0 m from northeast to southwest. Thereafter, the nonlinearities of the shallow layers at four borehole drilling sites were identified from the experimental data using the Ramberg–Osgood relationship. Subsequently, the dynamic nonlinear effective stress analysis of the one-dimensional soil column was performed to 592 sites in Mashiki between the seismological bedrock and ground surface to estimate the distribution of strong ground motions during the mainshock. First, the ground motions estimated by the nonlinear analysis corresponded to the ground motions observed at the Kik-net KMMH16. Second, the soil nonlinearity of shallow layers was considerably strong in the entire target area especially in the southern Mashiki, and the PGV distribution was similar to the building damage distribution after the mainshock. Furthermore, the estimated distribution of the soil liquefaction site was similar to the observed results, whereas certain invisible-liquefaction sites were estimated in the north and middle of the target area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.