Abstract

AbstractThe main objective of this work is to understand the major peculiarities of the process of clean fracturing fluid being displaced by a flow of particulate suspension (slurry) in a fracture channel. A number of 2D and 3D numerical simulations (based on an Euler‐Euler type model) of slurry flows in channels of complex geometry are carried out. The performance of the model is validated against experimental data by Gillies et al. Euler‐Euler simulations of a laminar slurry flow in a horizontal pipeline showed good agreement between computed and measured particle concentration distributions across a pipe. Numerical studies of slurry flows in 2D and 3D channels show the formation of an M‐shape profile of the solid phase across a channel at the initial fracture section. Our computations demonstrate the rapid growth of a dispersion zone separating a slurry and a clean fluid. It is shown that the dispersion zone is shorter in a tortuous channel than in a straight one. The computations illustrate a reduction in the dispersion zone length with an increase in the fracturing fluid viscosity. The results obtained show the importance of taking into account the previously ignored process of slurry/clean fluid boundary dispersion in prospective hydraulic fracturing simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.