Abstract

Digital tomosynthesis (DTS) is a geometric tomography technique by a limited-angle scan which has been popularly used in both medical and industrial X-ray imaging applications. However, conventional DTS remains limited by low contrast especially in imaging samples of low atomic number Z such as breast and cartilage tissues. In this work, we applied the recently proposed phase-contrast imaging (PCI) technique, the so-called single grid-based PCI, to DTS in attempt to overcome this limitation. PCI has superior soft-tissue imaging capability while DTS has improved image contrast. Combining the two techniques can therefore considerably improve the X-ray imaging performance. We developed a useful simulation platform for single grid-based phase-contrast DTS reconstruction and performed a systematic simulation using a three-dimensional (3D) numerical breast phantom. In the simulation, an X-ray grid having a lead strip density of 200 lines/inch was used and the DTS scan comprised 41 projections within an angle range of θ = ±40° at an X-ray energy of 25 keV. We successfully reconstructed DTS images of much improved contrast, compared to conventional DTS images, which demonstrates the viability of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.